In squid nerves intracellular Mg(2+) promotes deactivation of the ATP-upregulated Na(+)/Ca(2+) exchanger.
نویسندگان
چکیده
We investigated the role of intracellular Mg(2+) (Mg(i)(2+)) on the ATP regulation of Na(+)/Ca(2+) exchanger in squid axons and bovine heart. In squid axons and nerve vesicles, the ATP-upregulated exchanger remains activated after removal of cytoplasmic Mg(2+), even in the absence of ATP. Rapid and complete deactivation of the ATP-stimulated exchange occurs upon readmission of Mg(i)(2+). At constant ATP concentration, the effect of intracellular Mg(2+) concentration ([Mg(2+)](i)) on the ATP regulation of exchanger is biphasic: activation at low [Mg(2+)](i), followed by deactivation as [Mg(2+)](i) is increased. No correlation was found between the above results and the levels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] measured in nerve membrane vesicles. Incorporation of PtdIns(4,5)P(2) into membrane vesicles activates Na(+)/Ca(2+) exchange in mammalian heart but not in squid nerve. Moreover, an exogenous phosphatase prevents MgATP activation in squid nerves but not in mammalian heart. It is concluded that 1) Mg(i)(2+) is an essential cofactor for the deactivation part of ATP regulation of the exchanger and 2) the metabolic pathway of ATP upregulation of the Na(+)/Ca(2+) exchanger is different in mammalian heart and squid nerves.
منابع مشابه
In squid nerves intracellular Mg 2 1 promotes deactivation of the ATP - upregulated Na 1 / Ca 2 1 exchanger
REINALDO DIPOLO, GRACIELA BERBERIÁN, AND LUIS BEAUGÉ Laboratorio de Permeabilidad Iónica, Centro de Biofı́sica y Bioquı́mica, Instituto Venezolano de Investigaciones Cientificas, Caracas 1020-A, Venezuela; Laboratorio de Biofı́sica, Instituto de Investigación Médica M. y M. Ferreyra, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, 5000 Córdoba, Argentina; and Marine Biological Laborato...
متن کاملDual effect of Nai+ on Ca2+ influx through the Na+/Ca2+ exchanger in dialyzed squid axons. Experimental data confirming the validity of the squid axon kinetic model.
We propose a steady-state kinetic model for the squid Na(+)/Ca(2+) exchanger that differs from other current models of regulation in that it takes into account, within a single kinetic scheme, all ionic [intracellular Ca(2+) (Ca(i)(2+))-intracellular Na(+) (Na(i)(+))-intracellular H(i)(+)] and metabolic (ATP) regulations of the exchanger in which the Ca(i)(2+)-regulatory pathway plays the centr...
متن کاملIn dialyzed squid axons oxidative stress inhibits the Na+/Ca2+ exchanger by impairing the Cai2+-regulatory site.
The Na(+)/Ca(2+) exchanger, a major mechanism by which cells extrude calcium, is involved in several physiological and physiopathological interactions. In this work we have used the dialyzed squid giant axon to study the effects of two oxidants, SIN-1-buffered peroxynitrite and hydrogen peroxide (H(2)O(2)), on the Na(+)/Ca(2+) exchanger in the absence and presence of MgATP upregulation. The res...
متن کاملSEA-0400, a potent inhibitor of the Na+/Ca2+ exchanger, as a tool to study exchanger ionic and metabolic regulation.
The effects of a new, potent, and selective inhibitor of the Na(+)/Ca(2+) exchange, SEA-0400 (SEA), on steady-state outward (forward exchange), inward (reverse exchange), and Ca(2+)/Ca(2+) transport exchange modes were studied in internally dialyzed squid giant axons from both the extra- and intracellular sides. Inhibition by SEA takes place preferentially from the intracellular side of the mem...
متن کاملMagnesium efflux in dialyzed squid axons
The efflux of Mg++ from squid axons subject to internal solute control by dialysis is a function of ionized [Mg], [Na], [ATP], and [Na]o. The efflux of Mg++ from an axon with physiological concentrations of ATP, Na, and Mg inside into seawater is of the order of 2-4 pmol/cm2s but this efflux is strongly inhibited by increases in [Na]i, by decreases in [ATP]i, or by decreases in [Na]o. The efflu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 5 شماره
صفحات -
تاریخ انتشار 2000